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1. Infinite-volume Gibbs measures

We discuss some basic facts regarding Gibbs measures on the infinite lattice Zd. Our discussion
is restricted to an explicit case with nearest-neighbor interactions but the reader should note
that the general theory allows much more flexibility; see Friedli and Velenik [3, Chapter 6] for
additional details.

Preliminaries. Let (S,S, λ) be a measure space (λ is a positive measure, either finite or
infinite). We assume that S is a Polish space (metric, separable and complete) with S its Borel
sigma algebra (this is convenient in order to define Gibbs measures through regular conditional
probabilities as we do, though it is possible to develop the theory under weaker assumptions).
Fix an integer d > 1. We will consider various probability measures on the measurable space

Ω := SZd
= {ϕ | ϕ : Zd → S} equipped with the product topology and Borel sigma algebra F .

We denote subsets of Zd by Λ or ∆. For a subset Λ ⊆ Zd and ϕ ∈ Ω we write ϕΛ for the
restriction ϕ|Λ. A cylinder set in Ω is a set of the form∏

v∈Zd

Ev with Ev ∈ S for all v and Ev = S for all but finitely many v.

We call a function f : Ω→ R local if there exists a finite Λ ⊆ Zd such that f(ϕ) = f(ϕ′) whenever
ϕΛ = ϕ′Λ. We say that f is determined by Λ (for any such Λ). We recall several basic facts about
probability measures on Ω:

• A probability measure P on Ω is determined by the probabilities P(E) for all cylinder sets
E, or by the expectations P(f) for all bounded, continuous local functions f .
• A sequence of probability measures Pn on Ω converges (in distribution, i.e., in the weak*

topology) to a probability measure P on Ω if P(f) = limn→∞ Pn(f) for all bounded, con-
tinuous functions f . This is equivalent to convergence for all bounded, continuous local
functions f (see, e.g., [2, Chapter 3, Proposition 4.6(b)]).
• If S is compact then Ω and the set of probability measures on Ω is compact. Thus, in

this case, any sequence of probability measures Pn on Ω has a convergent subsequence.
Consequently, convergence of Pn itself (to some limit) is assured once limn→∞ Pn(f) exists
for all bounded, continuous local functions f .
• For each measure P on Ω and sub-sigma-algebra G ⊆ F there exists a regular conditional

probability for P conditioned on G. That is, there exists a function Q : Ω × F → [0, 1]
satisfying that

– Q(ϕ, ·) is a probability measure on Ω, except for ϕ in a P-null set in G.
– For each E ∈ F , Q(·, E) = P(E | G) except on a P-null set in G.

In addition, if both Q1,Q2 satisfy the above two properties then the probability measures
Q1(ϕ, ·) and Q2(ϕ, ·) are equal except for ϕ in a P-null set in G. See [1, Section 10.2] for
proofs and additional details.

Finite-volume Gibbs measures. We restrict attention to measures defined via a nearest-
neighbor interaction with soft constraints as follows. Let h : S × S → (0,∞) be a measurable
function satisfying

h(a, b) = h(b, a) for all a, b ∈ S. (1)
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For a finite set Λ ⊆ Zd and η : Zd → S we let PηΛ be the probability measure on Ω defined by

dPηΛ(ϕ) :=
1

ZηΛ

∏
u∼v

{u,v}∩Λ 6=∅

h(ϕu, ϕv)
∏
v∈Λ

dλ(ϕv)
∏

v∈Zd\Λ

dδηv(ϕv) (2)

where δs is the Dirac delta measure at s, so that the measure PηΛ is supported on configurations
ϕ satisfying ϕΛc = ηΛc , and where

ZηΛ :=

∫ ∏
u∼v

{u,v}∩Λ6=∅

h(ϕu, ϕv)
∏
v∈Λ

dλ(ϕv)
∏

v∈Zd\Λ

dδηv(ϕv)

is a normalizing constant. We call PηΛ a finite-volume Gibbs measure in Λ with boundary condition
η. We will also use the same notation with η : Λc → S (as PηΛ clearly depends only on ηΛc).
We assume throughout that the interaction function h and single-site measure λ satisfy suitable
integrability conditions to ensure that for any finite Λ ⊆ Zd and η : Zd → S,

ZηΛ <∞

so that PηΛ is well defined, and

PηΛ(f) is a continuous function of η, for any bounded, continuous function f. (3)

The following lemma describes two fundamental properties of Gibbs measures.

Lemma 1.1. Let ∆,Λ ⊆ Zd be finite sets satisfying ∆ ⊆ Λ and let η : Zd → S.

(i) (Domain Markov property). The measure PηΛ depends on η only through η∂extΛ, where

∂extΛ := {v ∈ Zd : v /∈ Λ and there exists u ∈ Λ adjacent to v}.
(ii) (Gibbs property). Suppose ϕ is sampled from PηΛ. Then the distribution of ϕ conditioned

on ϕ∆c (in the sense of regular conditional probabilities) equals Pϕ∆c

∆ , almost surely.

Both claims follow directly from the definition (2) of PηΛ.

Examples. We list a few examples of the above setup.

(i) Ising and Potts models. In the Ising model S = {−1, 1} with the discrete topology and
uniform probability measure and, for a given inverse temperature β ∈ R (negative β yields
the anti-ferromagnetic Ising model),

h(a, b) = exp(βab).

More generally, given an integer q > 2, the Potts model is defined by taking S = {1, 2, . . . , q}
with the discrete topology and uniform probability measure and, for a given inverse tem-
perature β ∈ R,

h(a, b) = exp(−βδab),

where δab is the Kronecker delta function.

(ii) Spin O(n) model. For a given integer n > 1, the spin O(n) model has S = Sn−1, the
sphere of dimension n − 1, with the topology inherited from the embedding Sn−1 ⊆ Rn
and the uniform (i.e., rotationally invariant) probability measure. For a given inverse
temperature β ∈ R,

h(a, b) = exp(β〈a, b〉),

where 〈·, ·〉 denotes the standard inner product in Rn. The case n = 1 is exactly the Ising
model. The case n = 2 is called the XY model, or plane rotator model, and the case n = 3
is called the Heisenberg model.

(iii) Discrete Gaussian free field. Here, S = R with its standard topology and Lebesgue
measure and, for a given inverse temperature β > 0,

h(a, b) = exp(−β(a− b)2).

Note that here, unlike the previous examples, the space S is not compact.
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(iv) Random-cluster model. Given a finite graph G = (V (G), E(G)) and reals 0 < p < 1,
q > 0, the random-cluster (or FK) model is the probability measure PG,p,q over subsets of
E(G) given by

PG,p,q(ω) :=
1

ZG,p,q
p|ω|(1− p)|E(G)\ω|qC(ω), ω ⊆ E(G),

where C(ω) is the number of connected components in the graph (V (G), ω) and ZG,p,q
normalizes PG,p,q to be a probability measure. The random-cluster model does not fall
under the framework of the above discussion as it is not a nearest-neighbor model (for

q 6= 1, due to the factor qC(ω)), but is included in a more comprehensive discussion of
infinite-volume Gibbs measures, see, e.g., Friedli and Velenik [3, Chapter 6].

Infinite-volume Gibbs measures. We proceed to define infinite-volume Gibbs measures
following the Dobrushin, Lanford, Ruelle (DLR) formalism.

Definition. A probability measure P on Ω is called a Gibbs measure (corresponding to the finite-
volume Gibbs measures given in (2)) if it satisfies the following condition:
Let ϕ be sampled from P. For each finite Λ ⊆ Zd, the conditional distribution of ϕ given ϕΛc

equals PϕΛc

Λ .
Equivalently but in more formal terms: a regular conditional probability for P conditioned on
the sigma-algebra generated by ϕΛc is given by the mapping (ϕ,E) 7→ PϕΛc

Λ (E).

Does there exist a Gibbs measure? Is it unique? It is clear that the set of Gibbs measures is
convex (a mixture of Gibbs measures is again a Gibbs measure). Hence, there can either be zero,
one, or infinitely many Gibbs measures. We first consider the existence question.

Lemma 1.2. Let (Λn) be a sequence of finite domains which increases to Zd (i.e., Λn ⊆ Λn+1

and ∪Λn = Zd) and let (ηn) be a sequence of functions ηn : Λcn → S.

(i) If the sequence of measures PηnΛn
converges then its limit is a Gibbs measure. (such a limiting

procedure is called a thermodynamic limit, or an infinite-volume limit).

(ii) If S is compact then there exists a subsequence nk ↑ ∞ such that Pηnk
Λnk

converges.

Proof. The second part follows immediately from compactness of the set of probability measures
on Ω. We proceed to prove the first part. Denote by P the limit of PηnΛn

. It suffices to show that

for any finite Λ ⊆ Zd and any bounded, continuous function f : Ω→ R,

P(f |ϕΛc) = PϕΛc

Λ (f). (4)

Fix such a Λ and f . The equality (4) is equivalent to

P(g · P(f |ϕΛc)) = P(g · PϕΛc

Λ (f)) (5)

for any bounded, continuous function g : Ω → R determined by Λc (i.e., satisfying g(ϕ) = g(ϕ′)
whenever ϕΛc = ϕ′Λc). We shall obtain the equality (5) by developing both its sides. First, the
left-hand side of (5) satisfies

P(g · P(f |ϕΛc)) = P(g · f) (6)

by the properties of conditional expectation (as g is determined by Λc). Second, the right-hand
side of (5) satisfies

P(g·PϕΛc

Λ (f)) = lim
n→∞

PηnΛn
(g·PϕΛc

Λ (f)) = lim
n→∞

PηnΛn
(g·PηnΛn

(f |ϕΛc)) = lim
n→∞

PηnΛn
(g·f) = P(g·f), (7)

where the first equality follows since PϕΛc

Λ (f) is a continuous function of ϕΛc by (3), the second
equality follows from the Gibbs property of PηnΛn

given in Lemma 1.1, the third equality follows
from the properties of conditional expectation and the last equality follows since f and g are
continuous. Putting together (6) and (7) finishes the proof of (5). �

Thus in the case that S is compact there is always at least one Gibbs measure. In the non-
compact case it may be that no Gibbs measures exist and this is in fact the case for the discrete
Gaussian free field in dimensions d ∈ {1, 2}. The low-temperature Ising model admits two
different Gibbs measures (and hence infinitely many Gibbs measures, by taking mixtures of the
two), one obtained as a thermodynamic limit when ηn is the constant +1 configuration and the
other obtained when ηn is the constant −1 configuration.
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Extremal Gibbs measures. The convexity of the set of Gibbs measures gives it additional
structure: We say that a Gibbs measure P is extremal if it holds that when P = αP1 + (1−α)P2

for Gibbs measures P1,P2 and 0 < α < 1 then necessarily P = P1 = P2.

As will be discussed, extremal Gibbs measures are the building blocks for all Gibbs measures
and it is thus desirable to obtain additional properties of them. To this end let us define the tail
σ-algebra T as follows,

T := ∩Λ⊆Zd finiteσ({ϕv : v /∈ Λ}).
The following characterization is fundamental.

Lemma 1.3. Let P be a Gibbs measure. Then P is extremal if and only if P(A) ∈ {0, 1} for all
A ∈ T (that is, P is tail-trivial).

We require two preliminary claims.

Claim 1.4. If P is a Gibbs measure and A ∈ T has P(A) > 0 then 1A
P(A)P is also a Gibbs measure.

Proof. Denote Q := 1A
P(A)P. Let Λ ⊆ Zd be finite and let E ⊆ Ω be measurable. We need to show

that
Q(E |ϕΛc) = PϕΛc

Λ (E), Q-almost surely,

or equivalently, that for each event EΛc ⊆ Ω which is measurable with respect to σ(ϕΛc),

Q(1EΛc · PϕΛc

Λ (E)) = Q(EΛc ∩ E).

The last equality can be verified by noting that

Q(1EΛc · PϕΛc

Λ (E)) = P
(

1A
P(A)

· 1EΛc · PϕΛc

Λ (E)

)
=

1

P(A)
P(1A∩EΛc · P(E |ϕΛc)) =

1

P(A)
P(P(A ∩ EΛc ∩ E |ϕΛc))

=
1

P(A)
P(A ∩ EΛc ∩ E) = Q(EΛc ∩ E),

where the first equality follows from the definition of Q, the second equality follows as P is a
Gibbs measure, the third equality follows as A ∈ T ⊆ σ(ϕΛc) and EΛc ∈ σ(ϕΛc), the fourth
equality follows from the properties of conditional expectation and the last equality follows again
from the definition of Q. �

Claim 1.5. If P1,P2 are Gibbs measures satisfying that P1(A) = P2(A) for every A ∈ T then
P1 = P2.

Proof. Let P1,P2 be distinct Gibbs measures and let E ⊆ Ω be a measurable set for which
P1(E) 6= P2(E). Let (Λn) be an increasing sequence of finite subsets of Zd with ∪Λn = Zd.
Define a random variable X : Ω→ R by

X(ϕ) := lim sup
n→∞

P
ϕΛc

n
Λn

(E).

As X is measurable with respect to T it suffices to show that P1(X) 6= P2(X).

For any Gibbs measure P and any finite Λ ⊆ Zd,
PϕΛc

Λ (E) = P(E |ϕΛc), P-almost surely.

Thus, Lévy’s downward theorem shows that

X = lim
n→∞

P1(E |ϕΛc
n
) = P1(E | T ), P1-almost surely,

X = lim
n→∞

P2(E |ϕΛc
n
) = P2(E | T ), P2-almost surely.

We conclude that P1(X) = P1(E) 6= P2(E) = P2(X) finishing the proof of the claim. �

Proof of Lemma 1.3. First, suppose that there is some A ∈ T for which 0 < P(A) < 1. Clearly,

P = P(A) · 1A
P(A)

P + (1− P(A)) · 1Ac

P(Ac)
P

so that P is non-extremal, as both 1A
P(A)P and 1Ac

P(Ac)P are Gibbs measures by Claim 1.4.
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Second, suppose that P is non-extremal, so that there exist distinct Gibbs measures P1,P2 and
0 < α < 1 with P = αP1 + (1− α)P2. As P1 6= P2 it follows from Claim 1.5 that there exists an
event A ∈ T for which P1(A) 6= P2(A). Thus, P(A) = αP1(A) + (1− α)P2(A) /∈ {0, 1}. �

Extremal decomposition. For any Gibbs measure there exists a unique way to express the
measure as an ‘average’ of extremal Gibbs measures. This is a consequence of abstract principles
such as the Krein-Milman theorem and Choquet’s theorem. It may also be seen directly, by
starting with a Gibbs measure P and considering the regular conditional probability obtained
by conditioning P on the tail sigma-algebra T . One checks that P-almost surely, the resulting
conditional probability distribution is an extremal Gibbs measure and this then gives the required
decomposition. We do not elaborate further on this decomposition here and refer to Friedli and
Velenik [3, Section 6.8.4].

Translation-invariant and ergodic Gibbs measures. A probability measure P is called
translation-invariant if

P(A) = P(θvA) for each measurable set A ⊆ Ω and v ∈ Zd,
where, for a configuration ϕ ∈ Ω, θvϕ is the shifted configuration defined by (θvϕ)w = ϕ(w − v),
and θvA = {θvϕ : ϕ ∈ A}. The set of translation-invariant Gibbs measures is often simpler to
study and has special relevance to the physics of the model. The set of translation-invariant Gibbs
measures is itself convex and hence it is natural to try and characterize its extremal elements.
Here, we mean that a translation-invariant Gibbs measure P is extremal within translation-
invariant Gibbs measures if when P = αP1 + (1− α)P2 for translation-invariant Gibbs measures
P1,P2 and 0 < α < 1 then necessarily P = P1 = P2. Of course, if P is extremal (for all Gibbs
measures) then it is also extremal within translation-invariant Gibbs measures. However, the
converse need not hold.

The following lemma gives a useful characterization of extremality within translation-invariant
Gibbs measures. A measurable set A ⊆ Ω is called translation-invariant if θvA = A for all
v ∈ Zd. A translation-invariant probability measure P on Ω is called ergodic if P(A) ∈ {0, 1} for
all translation-invariant A ⊆ Ω.

Lemma 1.6. A translation-invariant Gibbs measure P is extremal within translation-invariant
Gibbs measures if and only if it is ergodic.

The proof of the lemma is left as an exercise to the reader.
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